December 15, 2016 Mr. Bruce Morrison Project Manager U.S. Environmental Protection Agency, Region 7 11201 Renner Boulevard Lenexa, KS 66219 DEC 1 6 2016 AWMD/RCAP RE: Vapor Intrusion – Sub Slab Sampling Solutia – John F. Queeny Plant St. Louis, Missouri EPA ID No. MOD 004 954 111 Dear Mr. Morrison: EOI is providing this report on behalf of SWH Investments II, to address obligations under an Administrative Order on Consent (EPA Docket No: RCRA-07-2009-0015), and to prepare the property for redevelopment for industrial/commercial use. The July 5, 2016 Groundwater and Vapor Intrusion Work Plan was approved by the United States Environmental Protection Agency (EPA) via their letter dated July 19, 2016. This letter report covers the first phase of work conducted for the vapor intrusion component of the plan. ## **Background and Purpose** Prior to implementing the approved plan, EPA sent an email on August 19, 2016, which had comments pertaining to work not specified in the plan. A conversation with EPA and the Missouri Department of Natural Resources (MDNR) was held on August 22, 2016, and the agreed-upon work plan changes were memorialized in an email to EPA and MDNR on August 23, 2016. Specifically, the soil gas portion of the plan was deleted. In addition, the sub-slab vapor testing was augmented from one point per building to two points per building. This initial phase of an iterative process concerning vapor intrusion generated data to evaluate potential existing concerns for vapor generation from the groundwater impacts in downgradient locations to the north of the site. This report describes the field work and test results. The report also provides recommendations for the next phase of work. #### Approach The vapor intrusion evaluation at the Solutia site is being conducted in phases. The first phase involved evaluating the most recent groundwater data (May 2015) to determine if volatiles present in the closest upgradient groundwater are potentially a threat via the vapor intrusion Environmental Engineering, Consulting, Remediation & Demolition 1530 South 2nd Street St. Louis, Missouri 63104-4500 314.241.0900 www.environmentalops.com RCRA 12/15/2016 pathway. To make this determination, the USEPA's Vapor Intrusion Screening Level (VISL) Calculator (USEPA, Nov. 2015) was used to screen for constituents of potential concern (COPCs). Screening was performed by comparing the maximum detected chemical concentration of volatile organic chemicals (VOCs) to levels established in the VISL calculator, for the industrial scenario at the 1E-05 cancer risk target level. Chemicals exceeding their respective screening level are considered to be COPCs and are evaluated further. Note that there are no values in the guidance for cis or trans 1,2-dichloroethene. The COPCs include the following as approved by EPA: 1,1,1-trichloroethane, 1,2-dichloroethane, acetone, benzene, chlorobenzene, chloroform, cis-1,2-dichloroethene, ethylbenzene, methylene chloride, tetrachloroethene (PCE), toluene, trichloroethene (TCE), trans-1,2-dichloroethene, vinyl chloride, and xylenes. Due to the proximity of the diesel storage tank used by the school bus company and located immediately upgradient to the bus maintenance facility, naphthalene was added as a COPC at that location to evaluate potential presence of diesel fuel versus detections associated with the historic impacts. The general Solutia site location is depicted in Figure 1. Figure 2 shows the two buildings identified and described in the work plan for collecting the sub-slab samples. The figure also shows the approximate location of the samples and their designation. These buildings are on property owned by Ahrens Contracting, Inc. (Ahrens). Mr. Ted Ahrens, Jr. was contacted to facilitate access. To minimize any disruptions to regular work activities at the planned locations, at the request of Mr. Ahrens, we agreed to conduct the sub-slab vapor collection on Saturday, September 24, 2016. ### Field Work Collection of sub-slab vapor samples was conducted on September 24, 2016. Ms. Christine Kump-Mitchell with MDNR was on-site observing and available for questions or input. Mr. Ahrens and an Ahrens employee, Charlie Evans, provided access to the buildings. The first samples were obtained from the Ahrens office building. Ms. Kump Mitchell agreed that one sample from each end of the east-west trending hallway was best. No known sub-grade utilities were present. The flooring, observed to be in good condition, consisted of 12-inch tile over concrete. ## Probe and Vapor PinTM Installation The first sample location, SSV-1, was collected at the western end of the hallway. A rotary hammer was used to create the requisite hole for placement of sample equipment, a Vapor PinTM. The hole diameter in the floor slab for the pin was approximately 1.5-inches. A 5/8-inch hole was drilled through the slab and a least 1-inch below the slab to create a void. At this location, the floor slab was greater than 10-inches thick. After removal of the bit, the floor surface was cleaned, removing loose cuttings with a vacuum. The Vapor PinTM was installed in accordance with the manufacturer's instructions. Care was taken to ensure that a tight seal was made, and the protective cap on the Vapor Pin™ was in place to prevent vapor loss prior to sampling. The sub-slab sample point was flush mounted. Although the Teflon sleeve on the pin should create an adequate seal, a secondary check was performed, utilizing a water dam. Leak testing (shut-in for sampling train) was conducted to ensure a representative sample was collected from the sub-slab vapor probe location. Collection of SSV-2 was at the eastern end of the hallway. The first three attempts to penetrate the concrete slab were each terminated after drilling nearly three feet into concrete. Upon concurrence with MDNR, the location was moved further east into a room beyond the hallway. The concrete was about 10-inches thick, as seen in the west end of the building, and a sample was collected at this location. Sample SSV-3 was obtained from the bus maintenance building. The specific location was at the southwest corner of the break room. Sample SSV-4 was also obtained from the bus maintenance building, collected from the northeast end of the break room. The concrete slab for these two locations was about 4-inches thick. ## Sample Collection At each sample location, the Vapor PinTM was checked to determine that the pin was not blocked with material that could interfere with air flow. A lab-certified, pre-evacuated, clean 1.0-L Summa[®] canister was attached to the pin via Teflon tubing. The valve on Summa[®] canister was then opened. The sub-slab vapor sample was drawn into the canister by pressure equilibration. The sampling time varied by location. Once this sample, designated SSV-1, was collected, the Summa[®] valve was closed, and the Teflon tubing was removed. The vapor pin was then removed from the hole. Using Ace[®] brand, quick-curing, hydraulic cement mixed according to manufacturer's directions, the penetration was sealed. A metal rod was used to tamp the cement mixture so that cement was placed from the base of the hole to the surface. Sample number, sample location, and date collected was recorded on the chain of custody form and on the blank tag attached to the canister. The sample was submitted for analysis using EPA Method TO-15 for those COPCs previously described. This general approach was followed for each of the samples collected. The samples were taken to TekLab for analyses. ### **Analytical Testing** In accordance with the approved work plan, the samples were analyzed for the COPCs by EPA Method TO-15. The results are attached to this report. Detected COPCs in SSV-1 included 1,1,1-trichloroethane, acetone, chloroform, cis-1,2-dichloroethene, PCE, TCE, and trans-1,2-dichloroethene. Detected COPCs in SSV-2 included 1,1,1-trichloroethane, cis-1,2-dichloroethene, PCE, and TCE. Detected COPCs in SSV-3 included acetone, 1,1,1-trichloroethane, PCE, and toluene. Detected COPCs in SSV-4 included acetone, benzene, ethylbenzene, PCE, and toluene. Results are presented in Tables 1 through 4. ## Quality Assurance - Data Validation ## Sample Collection and Sample Receipt Samples were and shipped to Teklab, Inc. on September 24, 2016, as noted in the chain-of-custody (COC) form provided to the laboratory with sample submittal. The applicable data package from Teklab is designated 16091675. The chain-of-custody was maintained and the canisters were received by Teklab at their analytical facility in good condition. Samples were transferred to the North Bluff Road facility in Collinsville, IL, for analysis. Upon arrival at the laboratory, pressure readings on the sample canisters were obtained and then compared to the readings taken in the field following sample collection. Each of the comparisons demonstrated less than 5 inches Hg loss from field to lab, with the exception of sample SSV-3. While taking the final pressure reading in the field for sample SSV-3, there was an equipment malfunction regarding the canister's in-line gauge. Although it was not possible to obtain this final pressure reading, the sample collection is considered to have been complete, similar to the other three samples collected. Because of this, and the fact that the other three sample canisters did not show a loss of pressure greater than 5 inches Hg from field to lab, all sample are deemed to have arrived at the laboratory in an acceptable manner. #### Analytical Methods Air samples were analyzed by method TO15, providing results for the following VOC analytes by Gas Chromatograph/Mass Spectrometry (GC/MS): - 1. 1,1,1-trichloroethane - 2. 1,2-dichloroethane - 3. acetone - 4. benzene - 5. chlorobenzene - 6. chloroform - 7. cis-1,2-dichloroethene - 8. ethylbenzene - 9. methylene chloride - 10. naphthalene - 11. tetrachloroethene - 12. toluene - 13. trans-1,2-dichloroethene - 14.
trichloroethene - 15. vinyl chloride - 16. xylenes, total ## **Analytical Reporting Limits** Reporting limits for all data packages were within project requirements. However, due to high concentrations of some target analytes and/or matrix interference, analyses of some analytes required dilutions, as follows. All VOCs analyzed in sample SSV-1 required a dilution to a factor of 200, except for tetrachloroethene and trichloroethene, which required dilutions to a factor of 1000. All VOCs analyzed in sample SSV-2 required a dilution to a factor of 200, except for trichloroethene, which required a dilution to a factor of 1000. All VOCs analyzed in samples SSV-3 and SSV-4 required a dilution to a factor of 2, except for acetone, which required a dilution to a factor of 20. ## Laboratory Data Packages The laboratory analytical data packages were complete, including the Quality Control information. A COC was included with each laboratory data package, double-signed and dated. ## Sample Preservation Sample preservation is not applicable for air samples. ## **Holding Times** All samples were analyzed by the laboratory within the specified holding. Samples were collected on September 24, 2016 and analyzed on September 28. #### Blanks Two method blank samples were analyzed for this batch of VOCs. Neither resulted in any detections above the method reporting limit. #### Laboratory Control Sample Two laboratory control samples (LCSs) with corresponding laboratory control sample duplicates (LCSDs) were analyzed for this batch. The percent recoveries of compounds spiked/analyzed were all within the percent quality control range limits and the relative percent difference (RPDs) for the duplicates were within the quality control criteria range. ### Surrogate Recoveries Surrogate recoveries for each of the four air samples were within the acceptable criteria range. On the basis of the data validation described above, all sample data are deemed to be of sufficient quality. #### **Data Evaluation** As described in the work plan, for consistency in screening and evaluating data for an industrial risk scenario, if the sum of the carcinogenic risks exceeds 1E-05, or if the VI hazards sum exceeds 1.0, the next phase, an indoor air study, will be triggered. USEPA's VISL Calculator (USEPA, May 2016) was used to calculate risk for chemicals analyzed in each gas sample. Detected chemical concentrations were input into the Sub-slab or Exterior Gas Concentration to Indoor Air Concentration (SGC-IAC) model of the VISL. As a conservative measure, the method detection limit (MDL) concentrations of chemicals which were not detected were also input into the VISL SGC-IAC. As indicated above, there are no values in the VISL calculator for cis or trans 1,2-dichloroethene. Tables 1 through 4 show the COPC concentrations and their respective cancer risk results and noncancer hazard indices (HIs; with the HI being a sum of the individual chemical's hazard quotients [HQs]). Only samples SSV-1 and SSV-2 demonstrated a cumulative cancer risk greater than 1E-05 as well as an exceedance of the noncancer HI criteria of 1.0. The chemicals which demonstrated the major contribution to the cumulative risks in sample SSV-1 are: Chloroform, PCE, and TCE. Each of the risk results for those chemicals demonstrated either a cancer risk greater than 1E-05 and/or an HQ greater than 1.0. For sample SSV-2, the following constituents exceeded at least one of those criteria: PCE, and TCE. Based upon the data for SSV-3 and SSV-4, criteria were not exceeded, either individually or cumulatively. Supporting documentation of the calculations and evaluation are attached to this report. ### **Conclusions and Recommendations** Based upon the work conducted and evaluation of the data, as no criteria were exceeded for samples obtained from the bus maintenance building, no additional work is needed per the VI Work Plan for that structure. Based upon evaluation of the data obtained from the Ahrens office building, as criteria were exceeded, additional work is needed per the VI Work Plan. The next phase of work will be collection of indoor air samples. This task will be conducted per the Work Plan, with field work coordinated with the building owner. This first event will be conducted between December 15, 2016, and February 15, 2017, with two samples obtained from the building, per the approved work plan. As described in the Work Plan, prior to sampling, a detailed survey of the building will be performed. The pre-sampling inspection will identify conditions that may affect or interfere with the proposed testing. The inspection will include the type of structure, floor layout, physical conditions, and airflows. A product inventory will help identify potential sources of interference. Owners/occupants will also be requested to assist in filling out a pre-sampling questionnaire. The questionnaire and inventory survey will enable the sampling investigator to document various information on building construction, the occupants, and potential sources of indoor air contamination. A photo-ionization detector (PID) may also be used as a screening tool to identify potential sources for interference. If there are questions or concerns related to this report, please contact Larry Rosen, who can be reached by phone at (314) 480-4694, or via email at larryr@environmentalops.com. Respectfully submitted, ENVIRONMENTAL OPERATIONS, INC. Sawrence C. Rosen Lawrence C. Rosen, R.G. Senior Project Manager Copy: Mr. Michael House/Solutia Ms. Christine Kump-Mitchell/MDNR Mr. Rich Nussbaum/ MDNR Attachments: Figure 1 – General Site Plan Figure 2 – Sample Locations Tables 1 through 4 – Summary Data with Risk Criteria VISL Calculation Supporting Documentation Analytical Laboratory Report 16091675 ## **FIGURES** GENERAL LOCATION OF J.F. QUEENY PLANT BASE MAP REFERENCE: MAP TAKEN FROM ELECTRONIC USGS DIGITAL RASTER GRAPHIC 7.5 MINUTE SERIES TOPOGRAPHIC MAP OF CAHOKIA, ILLINOIS, REVISED 1952. Site Location Map Former Solutia Queeny Plant Saint Louis Missouri **TABLES** Table 1 SSV-1 9/24/2016 9:26:00 AM Sample SSV-1 (Nondetects at the Method Detection Level) Commercial¹ | | | | | | | | | | | | VISL F | Results | |--------------------------|------|---|--------|-------|-------|---------|-------|---|--------|------|----------|----------| | Analyte | Unit | F | Result | Unit | | Result | Unit | | Result | Qual | CR | HQ | | Acetone | ppbv | | 630 | mg/M3 | 7 | 1.4965 | ug/m3 | | 1496.5 | | No IUR | 3.30E-04 | | Benzene | ppbv | < | 10 | mg/M3 | < | 0.0319 | ug/m3 | < | 31.9 | | 6.10E-07 | 7.30E-03 | | Chlorobenzene | ppbv | < | 10 | mg/M3 | < | 0.046 | ug/m3 | < | 46 | | No IUR | 6.30E-03 | | Chloroform | ppbv | | 216 | mg/M3 | | 1.0546 | ug/m3 | | 1054.6 | | 5.90E-05 | 7.40E-02 | | 1,2-Dichloroethane | ppbv | < | 10 | mg/M3 | / | 0.0405 | ug/m3 | < | 40.5 | | 2.60E-06 | 4.00E-02 | | Ethylbenzene | ppbv | < | 10 | mg/M3 | < | 0.0434 | ug/m3 | < | 43.4 | | 2.70E-07 | 3.00E-04 | | Methylene chloride | ppbv | < | 10 | mg/M3 | < | 0.0347 | ug/m3 | < | 34.7 | 12.3 | 8.50E-10 | 4.00E-04 | | Naphthalene | ppbv | < | 20 | mg/M3 | < | 0.1048 | ug/m3 | < | 104.8 | | 8.70E-06 | 2.40E-01 | | Tetrachloroethene | ppbv | | 8240 | mg/M3 | 111-1 | 55.8882 | ug/m3 | | 55888 | | 3.60E-05 | 9.60E+00 | | Toluene | ppbv | < | 50 | mg/M3 | / | 0.0377 | ug/m3 | < | 37.7 | | No IUR | 5.20E-05 | | 1,1,1-Trichloroethane | ppbv | | 276 | mg/M3 | | 1.5059 | ug/m3 | | 1505.9 | | No IUR | 2.10E-03 | | Trichloroethene | ppbv | | 10600 | mg/M3 | | 56.9618 | ug/m3 | | 56962 | | 5.70E-04 | 2.00E+02 | | Vinyl chloride | ppbv | < | 10 | mg/M3 | < | 0.0256 | ug/m3 | < | 25.6 | | 2.80E-07 | 1.80E-03 | | Xylenes, Total | ppbv | < | 30 | mg/M3 | < | 0.1303 | ug/m3 | < | 130.3 | | No IUR | 8.90E-03 | | cis-1,2-Dichloroethene | ppbv | | 172 | mg/M3 | | 0.682 | ug/m3 | T | 682 | | No IUR | No RfC | | trans-1,2-Dichloroethene | ppbv | | 108 | mg/M3 | | 0.4282 | ug/m3 | | 428.2 | | No IUR | No RfC | ppbv = parts per billion by volume VISL = vapor intrusion screening level = risk results exceed criteria Carcinogenic Risk Sum = 6.8E-04 Noncancer Hazard Index = 2.1E+02 ¹Results obtained using EPA's Vapor Intrusion Screening Level Calculator, May 2016 Regional Screening Levels (RSLs) Table 2 SSV-2 9/24/2016 9:43:00 AM | Sample | SSV-2 (| Nor | ndetects | s at the M | leth | nod Detect | ion Leve | el) | | | Commercial ¹ VISL Results | | |--------------------------|---------|-----|----------|------------|------|------------|----------|-------|--------|------|--------------------------------------|----------| | Analyte | Unit | F | Result | Unit | | Result | Unit | £ 4.7 | Result | Qual | CR | HQ | | Acetone | ppbv | < | 40 | mg/M3 | < | 0.095 | ug/m3 | < | 95 | | No IUR | 2.10E-05 | | Benzene | ppbv | < | 10 | mg/M3 | < | 0.0319 | ug/m3 | < | 31.9 | | 6.10E-07 | 7.30E-03 | | Chlorobenzene | ppbv | < | 10 | mg/M3 | < | 0.046 | ug/m3 | < | 46 | | No IUR | 6.30E-03 | | Chloroform | ppbv | < | 20 | mg/M3 | < | 0.0977 | ug/m3 | < | 97.7 | | 5.50E-06 | 6.80E-03 | | 1,2-Dichloroethane | ppbv | < | 10 | mg/M3 | < | 0.0396 | ug/m3 | < | 39.6 | | 2.50E-06 | 3.90E-02 | | Ethylbenzene | ppbv | < | 10 | mg/M3 | < | 0.0434 | ug/m3 | < | 43.4 | | 2.70E-07 | 3.00E-04 | | Methylene chloride | ppbv | < | 10 | mg/M3 | < | 0.0347 | ug/m3 | < | 34.7 | | 8.50E-10 | 4.00E-04 | | Naphthalene | ppbv | < | 20 | mg/M3 | < | 0.1048 | ug/m3 | < | 104.8 | | 8.70E-06 | 2.40E-01 | | Tetrachloroethene | ppbv | | 7220 | mg/M3 | | 48.97 | ug/m3 | | 48970 | | 3.10E-05 | 8.40E+00 | | Toluene | ppbv | < | 10 | mg/M3 | < | 0.0377 | ug/m3 | < | 37.7 | | No IUR | 5.20E-05 | | 1,1,1-Trichloroethane | ppbv | | 410 | mg/M3 | | 2.237 | ug/m3 | 57.6 | 2237 | V. | No IUR | 3.10E-03 | | Trichloroethene | ppbv | 2.5 | 518 | mg/M3 | | 2.7836 | ug/m3 | | 2783.6 | | 2.80E-05 | 9.50E+00 | | Vinyl chloride | ppbv | < | 10 | mg/M3 | < | 0.0256 | ug/m3 | < | 25.6 | | 2.80E-07 | 1.80E-03 | | Xylenes, Total | ppbv | < |
30 | mg/M3 | < | 0.1303 | ug/m3 | < | 130.3 | | No IUR | 8.90E-03 | | cis-1,2-Dichloroethene | ppbv | | 226 | mg/M3 | | 0.8961 | ug/m3 | 17 | 896.1 | | No IUR | No RfC | | trans-1,2-Dichloroethene | ppbv | < | 10 | mg/M3 | < | 0.0396 | ug/m3 | < | 39.6 | | No IUR | No RfC | ppbv = parts per billion by volume VISL = vapor intrusion screening level Carcinogenic Risk Sum = 7.7E-05 Noncancer Hazard Index = 1.8E+01 = risk results exceed criteria ¹Results obtained using EPA's Vapor Intrusion Screening Level Calculator, May 2016 Regional Screening Levels (RSLs) Table 3 SSV-3 9/24/2016 11:13:00 AM Commercial¹ SSV-3 (Nondetects at the Method Detection Level) Sample **VISL Results** Unit Unit Result Unit Result Qual CR HQ Result Analyte 0.1055 ug/m3 105.5 No IUR 2.30E-05 mg/M3 Acetone ppbv 44.4 mg/M3 5.70E-09 6.80E-05 0.1 0.0003 ug/m3 < 0.3 Benzene ppbv < 0.5 6.80E-05 0.1 mg/M3 0.0005 ug/m3 No IUR Chlorobenzene ppbv < 0.001 ug/m3 5.60E-08 7.00E-05 0.2 mg/M3 Chloroform ppbv < ppbv mg/M3 0.0004 ug/m3 0.4 2.50E-08 3.90E-04 < 1,2-Dichloroethane 0.1 0.4 2.40E-09 2.70E-06 vdqq < 0.1 mg/M3 0.0004 ug/m3 Ethylbenzene 0.3 7.30E-12 3.40E-06 0.0003 ug/m3 Methylene chloride < mg/M3 ppbv 0.1 0.001 ug/m3 8.30E-08 2.30E-03 0.2 mg/M3 Naphthalene vdqq 29.7 5.10E-03 4.38 mg/M3 0.0297 ug/m3 1.90E-08 Tetrachloroethene ppbv 0.0041 ug/m3 No IUR 5.60E-06 4.1 Toluene ppbv 1.08 mg/M3 8.40E-06 0.0061 ug/m3 6.1 No IUR 1.12 mg/M3 1.1.1-Trichloroethane ppbv mg/M3 0.0005 ug/m3 0.5 5.00E-09 1.73-03 Trichloroethene ppbv 0.1 2.10E-05 0.3 3.20E-09 Vinyl chloride vdqq 0.1 mg/M3 0.0003 ug/m3 1.3 8.90E-05 mg/M3 0.0013 ug/m3 No IUR 0.3 Xylenes, Total ppbv < 0.0004 ug/m3 0.4 No IUR No RfC cis-1,2-Dichloroethene mg/M3 ppbv < 0.1 ppbv = parts per billion by volume trans-1,2-Dichloroethene VISL = vapor intrusion screening level vdaa 0.1 mg/M3 Carcinogenic Risk Sum = 2.0E-07 0.4 Noncancer Hazard Index = 0.0004 ug/m3 8.1E-03 No RfC No IUR ¹Results obtained using EPA's Vapor Intrusion Screening Level Calculator, May 2016 Regional Screening Levels (RSLs) Table 4 SSV-4 9/24/2016 11:07:00 AM Sample SSV-4 (Nondetects at the Method Detection Level) Commercial¹ VISL Results | Analyte | Unit
ppbv | | Result | 11.14 | | | | | | | | | |--------------------------|--------------|---|---------|-------|---|--------|-------|---|--------|------|----------|----------| | Α | ydaa | | INGSUIL | Unit | | Result | Unit | F | Result | Qual | CR | HQ | | Acetone | PP-04 | | 53 | mg/M3 | | 0.1259 | ug/m3 | | 125.9 | | No IUR | 2.80E-05 | | Benzene | ppbv | | 1.94 | mg/M3 | | 0.0062 | ug/m3 | | 6.2 | | 1.20E-07 | 1.40E-03 | | Chlorobenzene | ppbv | < | 0.1 | mg/M3 | < | 0.0005 | ug/m3 | < | 0.5 | | No IUR | 6.80E-05 | | Chloroform | ppbv | < | 0.2 | mg/M3 | < | 0.001 | ug/m3 | < | 1 | | 5.60E-08 | 7.00E-05 | | 1,2-Dichloroethane | ppbv | < | 0.1 | mg/M3 | < | 0.0004 | ug/m3 | < | 0.4 | | 2.50E-08 | 3.90E-04 | | Ethylbenzene | ppbv | | 1.44 | mg/M3 | | 0.0063 | ug/m3 | | 6.3 | | 3.80E-08 | 4.30E-05 | | Methylene chloride | ppbv | < | 0.1 | mg/M3 | < | 0.0003 | ug/m3 | < | 0.3 | | 7.30E-12 | 3.40E-06 | | Naphthalene | ppbv | < | 0.2 | mg/M3 | < | 0.001 | ug/m3 | < | 1 | | 8.30E-08 | 2.30E-03 | | Tetrachloroethene | ppbv | | 4.86 | mg/M3 | | 0.033 | ug/m3 | | 33 | | 2.10E-08 | 5.70E-03 | | Toluene | ppbv | | 4.56 | mg/M3 | | 0.0172 | ug/m3 | | 17.2 | | No IUR | 2.40E-05 | | 1,1,1-Trichloroethane | ppbv | < | 0.1 | mg/M3 | < | 0.0005 | ug/m3 | < | 0.5 | | No IUR | 6.80E-07 | | Trichloroethene | ppbv | < | 0.1 | mg/M3 | < | 0.0005 | ug/m3 | < | 0.5 | | 5.00E-09 | 1.70E-03 | | Vinyl chloride | ppbv | < | 0.1 | mg/M3 | < | 0.0003 | ug/m3 | < | 0.3 | | 3.20E-09 | 2.10E-05 | | Xylenes, Total | ppbv | < | 0.3 | mg/M3 | < | 0.0013 | ug/m3 | < | 1.3 | | No IUR | 8.90E-05 | | cis-1,2-Dichloroethene | ppbv | < | 0.1 | mg/M3 | < | 0.0004 | ug/m3 | < | 0.4 | | No IUR | No RfC | | trans-1,2-Dichloroethene | ppbv | < | 0.1 | mg/M3 | < | 0.0004 | ug/m3 | < | 0.4 | | No IUR | No RfC | ppbv = parts per billion by volume VISL = vapor intrusion screening level Carcinogenic Risk Sum = 3.5E-07 Noncancer Hazard Index = 1.2E-02 ¹Results obtained using EPA's Vapor Intrusion Screening Level Calculator, May 2016 Regional Screening Levels (RSLs) ## VISL SUPPORTING DOCUMENTATION Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.5.1 (May 2016 RSLs) Queeny Site, St. Louis, MO SSV-1 Sub-Slab Sample | Parameter | Symbol | Value | Instructions | |--|----------|----------|---| | Exposure Scenario | Scenario | | Select residential or commercial scenario from pull down list | | Target Risk for Carcinogens | TCR SG | 1.00E-05 | Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F) | | Target Hazard Quotient for Non-Carcinogens | THQ SG | 1 | Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G) | | | | Site Sub-slab or
Exterior Soil Gas
Concentration | Calculated
Indoor Air
Concentration | VI
Carcinogenic
Risk | VI Hazard | | |-------------------|-------------------------|--|---|----------------------------|-----------|--| | | | Csg | Cia | 00 | HQ | | | CAS Chemical Name | Chemical Name | (ug/m³) | (ug/m ³) | CR | | | | 67-64-1 | Acetone | 1.5E+03 | 4.49E+01 | No IUR | 3.3E-04 | | | 71-43-2 | Benzene | 3.2E+01 | 9.57E-01 | 6.1E-07 | 7.3E-03 | | | 108-90-7 | Chlorobenzene | 4.6E+01 | 1.38E+00 | No IUR | 6.3E-03 | | | 67-66-3 | Chloroform | 1.1E+03 | 3.16E+01 | 5.9E-05 | 7.4E-02 | | | 107-06-2 | Dichloroethane, 1,2- | 4.1E+01 | 1.22E+00 | 2.6E-06 | 4.0E-02 | | | 100-41-4 | Ethylbenzene | 4.3E+01 | 1.30E+00 | 2.7E-07 | 3.0E-04 | | | 75-09-2 | Methylene Chloride | 3.5E+01 | 1.04E+00 | 8.5E-10 | 4.0E-04 | | | 91-20-3 | Naphthalene | 1.0E+02 | 3.14E+00 | 8.7E-06 | 2.4E-01 | | | 127-18-4 | Tetrachloroethylene | 5.6E+04 | 1.68E+03 | 3.6E-05 | 9.6E+00 | | | 108-88-3 | Toluene | 3.8E+01 | 1.13E+00 | No IUR | 5.2E-05 | | | 71-55-6 | Trichloroethane, 1,1,1- | 1.5E+03 | 4.52E+01 | No IUR | 2.1E-03 | | | 79-01-6 | Trichloroethylene | 5.7E+04 | 1.71E+03 | 5.7E-04 | 2.0E+02 | | | 75-01-4 | Vinyl Chloride | 2.6E+01 | 7.68E-01 | 2.8E-07 | 1.8E-03 | | | 1330-20-7 | Xylenes | 1.3E+02 | 3.91E+00 | No IUR | 8.9E-03 | | | | Trichloroethylene | | | | Symbol | | Value **Inhalation Unit** Reference Mutagenic Risk Concentration RFC Indicator Source* Source IUR RfC (ug/m³)-1 (mg/m^3) 3.10E+01 3.00E-02 7.80E-06 5.00E-02 9.80E-02 7.00E-03 2.30E-05 2.60E-05 Р 2.50E-06 1.00E-08 1.00E+00 6.00E-01 Mut 3.40E-05 CA 3.00E-03 4.00E-02 5.00E+00 2.60E-07 5.00E+00 2.00E-03 1.00E-01 1.00E-01 TCE VC see note 4.40E-06 Symbol Value Vinyl Chloride See the Navigation Guide equation for Cia,c for vinyl chloride. Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.5.1 (May 2016 RSLs) Queeny Site, St. Louis, MO SSV-2 Sub-Slab Sample | Parameter | Symbol | Value | Instructions | |--|----------|-------|---| | Exposure Scenario | Scenario | | Select residential or commercial scenario from pull down list | | Target Risk for Carcinogens | TCR SG | | Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F) | | Target Hazard Quotient for Non-Carcinogens | THQ SG | 1 | Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G) | Value | | | Site Sub-slab or
Exterior Soil Gas
Concentration | Calculated
Indoor Air
Concentration | VI
Carcinogenic
Risk | VI Hazard | | |-----------|-------------------------------------|--|---|----------------------------|--------------|--| | | | Csg | Cia | CR | HQ | | | CAS | Chemical Name | (ug/m³) | (ug/m ³) | CR | пц | | | 67-64-1 | Acetone | 9.5E+01 | 2.85E+00 | No IUR | 2.1E-05 | | | 71-43-2 | Benzene | 3.2E+01 | 9.57E-01 | 6.1E-07 | 7.3E-03 | | | 108-90-7 | Chlorobenzene | 4.6E+01 | 1.38E+00 | No IUR | 6.3E-03 | | | 67-66-3 | Chloroform | 9.8E+01 | 2.93E+00 | 5.5E-06 | 6.8E-03 | | | 107-06-2 | Dichloroethane, 1,2- | 4.0E+01 | 1.19E+00 | 2.5E-06 | 3.9E-02 | | | 100-41-4 | Ethylbenzene | 4.3E+01 | 1.30E+00 | 2.7E-07 | 3.0E-04 | | | 75-09-2 | Methylene Chloride | 3.5E+01 | 1.04E+00 | 8.5E-10 | 4.0E-04 | | | 91-20-3 | Naphthalene | 1.0E+02 | 3.14E+00 | 8.7E-06 | 2.4E-01 | | | 127-18-4 | Tetrachloroethylene | 4.9E+04 | 1.47E+03 | 3.1E-05 | 8.4E+00 | | | 108-88-3 | Toluene | 3.8E+01 | 1.13E+00 | No IUR | 5.2E-05 | | | 71-55-6 | Trichloroethane, 1,1,1- | 2.2E+03 | 6.71E+01 | No IUR | 3.1E-03 | | | 79-01-6 | Trichloroethylene | 2.8E+03 | 8.35E+01 | 2.8E-05 | 9.5E+00 | | | 75-01-4 | Vinyl Chloride | 2.6E+01 | 7.68E-01 | 2.8E-07 | 1.8E-03 | | | 1330-20-7 | Xylenes | 1.3E+02 | 3.91E+00 | No IUR | 8.9E-03 | | | | Trichloroethylene
Vinyl Chloride | See the Navigation (| Guide equation for | Cia,c for vinyl chlo | Symbol ride. | | | Inhalation Unit
Risk | IUR | Reference
Concentration | RFC | Mutagenic
Indicator | | |------------------------------------|-------------
--|---------|------------------------|--| | IUR | Source* | RfC | Source* | 1 | | | (ug/m ³) ⁻¹ | | (mg/m ³) | | | | | e e La Serie Ber | | 3.10E+01 | Α | | | | 7.80E-06 | | 3.00E-02 | | | | | | 100 | 5.00E-02 | Р | | | | 2.30E-05 | | 9.80E-02 | Α | | | | 2.60E-05 | 8 4 1 1 2 2 | 7.00E-03 | Р | | | | 2.50E-06 | CA | 1.00E+00 | -1 | | | | 1.00E-08 | 1 | 6.00E-01 | | Mut | | | 3.40E-05 | CA | 3.00E-03 | | | | | 2.60E-07 | | 4.00E-02 | | | | | 4 7 4 6 7 2 4 | 4 T 1 T 1 | 5.00E+00 | 61.73 | | | | | | 5.00E+00 | | | | | see note | 15 1 | 2.00E-03 | 4.81 | TCE | | | 4.40E-06 | | 1.00E-01 | | VC | | | V 7 7 22 22 | | 1.00E-01 | | 1 1 1 1 | | | Symbol | Value | The state of s | | Symbol | | Value Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.5.1 (May 2016 RSLs) Queeny Site, St. Louis, MO SSV-3 Sub-Slab Sample | Parameter | Symbol | Value | Instructions | |--|----------|------------|---| | Exposure Scenario | Scenario | Commercial | Select residential or commercial scenario from pull down list | | Target Risk for Carcinogens | TCR SG | 1.00E-05 | Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F) | | Target Hazard Quotient for Non-Carcinogens | THQ SG | 1 | Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G) | | | | Site Sub-slab or
Exterior Soil Gas
Concentration | Calculated
Indoor Air
Concentration | VI
Carcinogenic
Risk | VI Hazard | | |-------------------|-------------------------------------|--|---|----------------------------|--------------|--| | | | Csg | Cia | CR | HQ | | | CAS Chemical Name | Chemical Name | (ug/m³) | (ug/m ³) | CR | пQ | | | 67-64-1 | Acetone | 1.1E+02 | 3.17E+00 | No IUR | 2.3E-05 | | | 71-43-2 | Benzene | 3.0E-01 | 9.00E-03 | 5.7E-09 | 6.8E-05 | | | 108-90-7 | Chlorobenzene | 5.0E-01 | 1.50E-02 | No IUR | 6.8E-05 | | | 67-66-3 | Chloroform | 1.0E+00 | 3.00E-02 | 5.6E-08 | 7.0E-05 | | | 107-06-2 | Dichloroethane, 1,2- | 4.0E-01 | 1.20E-02 | 2.5E-08 | 3.9E-04 | | | 100-41-4 | Ethylbenzene | 4.0E-01 | 1.20E-02 | 2.4E-09 | 2.7E-06 | | | 75-09-2 | Methylene Chloride | 3.0E-01 | 9.00E-03 | 7.3E-12 | 3.4E-06 | | | 91-20-3 | Naphthalene | 1.0E+00 | 3.00E-02 | 8.3E-08 | 2.3E-03 | | | 127-18-4 | Tetrachloroethylene | 3.0E+01 | 8.91E-01 | 1.9E-08 | 5.1E-03 | | | 108-88-3 | Toluene | 4.1E+00 | 1.23E-01 | No IUR | 5.6E-06 | | | 71-55-6 | Trichloroethane, 1,1,1- | 6.1E+00 | 1.83E-01 | No IUR | 8.4E-06 | | | 79-01-6 | Trichloroethylene | 5.0E-01 | 1.50E-02 | 5.0E-09 | 1.7E-03 | | | 75-01-4 | Vinyl Chloride | 3.0E-01 | 9.00E-03 | 3.2E-09 | 2.1E-05 | | | 1330-20-7 | Xylenes | 1.3E+00 | 3.90E-02 | No IUR | 8.9E-05 | | | | Trichloroethylene
Vinyl Chloride | See the Navigation (| Guide equation for (| Cia,c for vinyl chlor | Symbol ride. | | Value | Inhalation Unit
Risk | IUR | Reference
Concentration | RFC | Mutagenic
Indicator | | |------------------------------------|---------|----------------------------|---------|------------------------|--| | IUR | Source* | RfC | Source* | | | | (ug/m ³) ⁻¹ | | (mg/m ³) | | | | | | | 3.10E+01 | Α | | | | 7.80E-06 | | 3.00E-02 | 72. | | | | | L. C. | 5.00E-02 | Р | | | | 2.30E-05 | 1 | 9.80E-02 | Α | | | | 2.60E-05 | 120 C | 7.00E-03 | Р | | | | 2.50E-06 | CA | 1.00E+00 | 1. | | | | 1.00E-08 | | 6.00E-01 | | Mut | | | 3.40E-05 | CA | 3.00E-03 | | | | | 2.60E-07 | | 4.00E-02 | | | | | | | 5.00E+00 | | | | | | | 5.00E+00 | | | | | see note | | 2.00E-03 | " | TCE | | | 4.40E-06 | | 1.00E-01 | | VC | | | | 10 m | 1.00E-01 | | | | | Symbol | Value | | | Symbol | | Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.5.1 (May 2016 RSLs) Queeny Site, St. Louis, MO SSV-4 Sub-Slab Sample | Parameter | Symbol | Value | Instructions | |--|----------|----------|---| | Exposure Scenario | Scenario | | Select residential or commercial scenario from pull down list | | Target Risk for Carcinogens | TCR SG | 1.00E-05 | Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F) | | Target Hazard Quotient for Non-Carcinogens | THQ SG | 1 | Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G) | | | | Site Sub-slab or
Exterior Soil Gas
Concentration | Calculated
Indoor Air
Concentration | VI
Carcinogenic
Risk | VI Hazard | | |-----------|-------------------------|--|---|----------------------------|-----------|--| | | | Csg | Cia | CR | | | | CAS | Chemical Name | (ug/m³) | (ug/m ³) | CK | HQ | | | 67-64-1 | Acetone | 1.3E+02 | 3.78E+00 | No IUR | 2.8E-05 | | | 71-43-2 | Benzene | 6.2E+00 | 1.86E-01 | 1.2E-07 | 1.4E-03 | | | 108-90-7 | Chlorobenzene | 5.0E-01 | 1.50E-02 | No IUR | 6.8E-05 | | | 67-66-3 | Chloroform | 1.0E+00 | 3.00E-02 | 5.6E-08 | 7.0E-05 | | | 107-06-2 | Dichloroethane, 1,2- | 4.0E-01 | 1.20E-02 | 2.5E-08 | 3.9E-04 | | | 100-41-4 | Ethylbenzene | 6.3E+00 | 1.89E-01 | 3.9E-08 | 4.3E-05 | | | 75-09-2 | Methylene Chloride | 3.0E-01 | 9.00E-03 | 7.3E-12 | 3.4E-06 | | | 91-20-3 | Naphthalene | 1.0E+00 | 3.00E-02 | 8.3E-08 | 2.3E-03 | | | 127-18-4 | Tetrachloroethylene | 3.3E+01 | 9.90E-01 | 2.1E-08 | 5.7E-03 | | | 108-88-3 | Toluene | 1.7E+01 | 5.16E-01 | No IUR | 2.4E-05 | | | 71-55-6 | Trichloroethane, 1,1,1- | 5.0E-01 | 1.50E-02 | No IUR | 6.8E-07 | | | 79-01-6 | Trichloroethylene | 5.0E-01 | 1.50E-02 | 5.0E-09 | 1.7E-03 | | | 75-01-4 | Vinyl Chloride | 3.0E-01 | 9.00E-03 | 3.2E-09 | 2.1E-05 | | | 1330-20-7 | Xylenes | 1.3E+00 | 3.90E-02 | No IUR | 8.9E-05 | | | | Trichloroethylene | | | | Symbol | | Value Inhalation Unit Reference Mutagenic Concentration Risk RFC Indicator Source' Source RfC (ug/m³)-1 (mg/m³) (mg/m²) 3.10E+01 3.00E-02 5.00E-02 9.80E-02 7.00E-03 1.00E+00 6.00E-01 3.00E-03 4.00E-02 5.00E+00 7.80E-06 2.30E-05 2.60E-05 2.50E-06 1.00E-08 CA Mut 3.40E-05 2.60E-07 CA 5.00E+00 5.00E+00 2.00E-03 1.00E-01 TCE VC see note 4.40E-06 1.00E-01 Value Symbol Value Vinyl Chloride See the Navigation Guide equation for Cia,c for vinyl chloride. ## LABORATORY ANALYTICAL REPORT **WorkOrder:** 16091675 September 30, 2016 Larry Rosen Environmental Operations, Inc. 1530 South Second Street, Suite 200 St. Louis, MO 63104 TEL: (314) 480-4694 FAX: (314) 436-2900 RE: Solutia 2950R Dear Larry Rosen: TEKLAB, INC received 4 samples on 9/25/2016 4:20:00 PM for the analysis presented in the following report. Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative. All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc. If you have any questions regarding these tests results, please feel free to call. Sincerely, Shelly A. Hennessy Shelly A
Hennesoy Project Manager (618)344-1004 ex 36 SHennessy@teklabinc.com # **Report Contents** http://www.teklabinc.com/ Client: Environmental Operations, Inc. Work Order: 16091675 Client Project: Solutia 2950R Report Date: 30-Sep-16 ## This reporting package includes the following: | Cover Letter | . 1 | |-------------------------|----------| | Report Contents | 2 | | Definitions | 3 | | Case Narrative | 4 | | Laboratory Results | 5 | | Quality Control Results | 9 | | Receiving Check List | 12 | | Chain of Custody | Appended | ## **Definitions** http://www.teklabinc.com/ Client: Environmental Operations, Inc. Work Order: 16091675 Client Project: Solutia 2950R Report Date: 30-Sep-16 #### Abbr Definition - CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration. - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors. - DNI Did not ignite - DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot. - ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated. - IDPH IL Dept. of Public Health - LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request). - LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request). - MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses. - MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. - MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request). - MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request). - MW Molecular weight - ND Not Detected at the Reporting Limit ### NELAP NELAP Accredited - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request). - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL. - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request). - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes. - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples. - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET" - TNTC Too numerous to count (> 200 CFU) #### **Oualifiers** - # Unknown hydrocarbon - E Value above quantitation range - I Associated internal standard was outside method criteria - ND Not Detected at the Reporting Limit - S Spike Recovery outside recovery limits - X Value exceeds Maximum Contaminant Level - B Analyte detected in associated Method Blank - H Holding times exceeded - M Manual Integration used to determine area response - R RPD outside accepted recovery limits - T TIC(Tentatively identified compound) ## **Case Narrative** http://www.teklabinc.com/ Client: Environmental Operations, Inc. Work Order: 16091675 Client Project: Solutia 2950R Report Date: 30-Sep-16 Cooler Receipt Temp: NA °C TO15 analysis was performed at the North Bluff Road facility in Collinsville Illinois, Agency Interest No. 166578. ## **Locations and Accreditations** | | Collinsville | Springfield | Kansas City | Collinsville Air | |---------|-----------------------------|----------------------------|-------------------------|-----------------------------| | Address | 5445 Horseshoe Lake Road | 3920 Pintail Dr | 8421 Nieman Road | 5445 Horseshoe Lake Road | | | Collinsville, IL 62234-7425 | Springfield, IL 62711-9415 | Lenexa, KS 66214 | Collinsville, IL 62234-7425 | | Phone | (618) 344-1004 | (217) 698-1004 | (913) 541-1998 | (618) 344-1004 | | ax | (618) 344-1005 | (217) 698-1005 | (913) 541-1998 | (618) 344-1005 | | Email | jhriley@teklabinc.com | KKlostermann@teklabinc.com | dthompson@teklabinc.com | EHurley@teklabinc.com | | State | Dept | Cert # | NELAP | Exp Date | Lab | | |-----------|------|-----------------|-------|------------|--------------|--| | Illinois | IEPA | 100226 | NELAP | 1/31/2017 | Collinsville | | | Kansas | KDHE | E-10374 | NELAP | 4/30/2017 | Collinsville | | | Louisiana | LDEQ | 166493 | NELAP | 6/30/2017 | Collinsville | | | Louisiana | LDEQ | 166578 | NELAP | 6/30/2017 | Collinsville | | | Texas | TCEQ | T104704515-12-1 | NELAP | 7/31/2017 | Collinsville | | | Arkansas | ADEQ | 88-0966 | | 3/14/2017 | Collinsville | | | Illinois | IDPH | 17584 | | 5/31/2017 | Collinsville | | | Kentucky | KDEP | 98006 | | 12/31/2016 | Collinsville | | | Kentucky | UST | 0073 | | 1/31/2017 | Collinsville | | | Missouri | MDNR | 00930 | | 5/31/2017 | Collinsville | | | Missouri | MDNR | 930 | | 1/31/2017 | Collinsville | | | Oklahoma | ODEQ | 9978 | | 8/31/2017 | Collinsville | | http://www.teklabinc.com/ Client: Environmental Operations, Inc. Work Order: 16091675 Client Project: Solutia 2950R Report Date: 30-Sep-16 Lab ID: 16091675-001 Client Sample ID: SSV-4 Matrix: AIR CANISTER Collection Date: 09/24/2016 11:07 | Analyses | Certification | MDL | RL | Qual | Result | Units | DF | Date Analyzed | |----------------------------|---------------|---------|----------|---------------|--------|-------|----|-----------------| | O-15, VOLATILE ORGANIC | COMPOUNDS, B | Y GC/MS | | | | | | | | 1,1,1-Trichloroethane | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 18:3 | | MW 133.40 | | 0.0005 | 0.0055 | | ND | mg/m3 | | | | 1,2-Dichloroethane | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 18:3 | | MW 98.96 | | 0.0004 | 0.004 | | ND | mg/m3 | | | | Acetone | NELAP | 4 | 40.0 | | 53.0 | ppbv | 20 | 09/27/2016 18:5 | | MW 58.08 | | 0.0095 | 0.095 | | 0.1259 | mg/m3 | | | | Benzene | NELAP | 0.1 | 1.00 | | 1.94 | ppbv | 2 | 09/28/2016 18:3 | | MW 78.11 | | 0.0003 | 0.0032 | | 0.0062 | mg/m3 | | | | Chlorobenzene | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 18:3 | | MW 112.56 | | 0.0005 | 0.0046 | | ND | mg/m3 | | | | Chloroform | NELAP | 0.2 | 1.00 | 1 - 1 - 1 - 1 | ND | ppbv | 2 | 09/28/2016 18:3 | | MW 119.38 | | 0.001 | 0.0049 | | ND | mg/m3 | | | | cis-1,2-Dichloroethene | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 18:3 | | MW 96.94 | | 0.0004 | 0.004 | | ND | mg/m3 | | | | Ethylbenzene | NELAP | 0.1 | 1.00 | | 1.44 | ppbv | 2 | 09/28/2016 18:3 | | MW 106.17 | | 0.0004 | 0.0043 | | 0.0063 | mg/m3 | | | | Methylene chloride | NELAP | 0.1 | 2.00 | | ND | ppbv | 2 | 09/28/2016 18:3 | | MW 84.93 | | 0.0003 | 0.0069 | | ND | mg/m3 | | | | Naphthalene | NELAP | 0.2 | 1.00 | | ND | ppbv | 2 | 09/28/2016 18:3 | | MW 128.17 | | 0.001 | 0.0052 | | ND | mg/m3 | | | | Tetrachloroethene | NELAP | 0.1 | 1.00 | | 4.86 | ppbv | 2 | 09/28/2016 18:3 | | MW 165.83 | | 0.0007 | 0.0068 | | 0.033 | mg/m3 | | | | Toluene | NELAP | 0.1 | 1.00 | | 4.56 | ppbv | 2 | 09/28/2016 18:3 | | MW 92.14 | | 0.0004 | 0.0038 | | 0.0172 | mg/m3 | | | | trans-1,2-Dichloroethene | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 18:3 | | MW 96.94 | | 0.0004 | 0.004 | | ND | mg/m3 | | | | Trichloroethene | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 18:3 | | MW 131.39 | | 0.0005 | 0.0054 | | ND | mg/m3 | | | | Vinyl chloride | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 18:3 | | MW 62.50 | | 0.0003 | 0.0026 | | ND | mg/m3 | | | | Xylenes, Total | NELAP | 0.3 | 3.00 | 1 | ND |
ppbv | 2 | 09/28/2016 18:3 | | MW 106.17 | | 0.0013 | 0.013 | | ND | mg/m3 | | | | Surr: 4-Bromofluorobenzene | | 0.0010 | 41.2-165 | | 95.1 | %REC | 2 | 09/28/2016 18:3 | | MW 175.00 | | 0 | 41.2-165 | | 95.1 | %REC | | | http://www.teklabinc.com/ Client: Environmental Operations, Inc. Work Order: 16091675 Client Project: Solutia 2950R Report Date: 30-Sep-16 Lab ID: 16091675-002 Matrix: AIR CANISTER Client Sample ID: SSV-2 Collection Date: 09/24/2016 9:43 | Analyses | Certification | MDL | RL | Qual | Result | Units | DF | Date Analyzed | |-------------------------------------|----------------------|---------|----------|-------|--------------|---------------|------|------------------| | TO-15, VOLATILE ORGANIC | COMPOUNDS, B | Y GC/MS | | | | | | | | 1,1,1-Trichloroethane | NELAP | 10 | 100 | | 410 | ppbv | 200 | 09/28/2016 19:2 | | MW 133.40 | | 0.0546 | 0.5456 | | 2.237 | mg/m3 | | 00,20,20,00,10,2 | | 1,2-Dichloroethane | NELAP | 10 | 100 | 11111 | ND | ppbv | 200 | 09/28/2016 19:2 | | MVV 98.96 | | 0.0405 | 0.4047 | | ND | mg/m3 | | 50,20,20,10,10,2 | | Acetone | NELAP | 40 | 400 | | ND | ppbv | 200 | 09/28/2016 19:2 | | MW 58.08 | | 0.095 | 0.9502 | | ND | mg/m3 | | 00/20/2010 10:2 | | Benzene | NELAP | 10 | 100 | | ND | ppbv | 200 | 09/28/2016 19:2 | | MW 78.11 | | 0.0319 | 0.3195 | | ND | mg/m3 | 200 | 00/20/2010 10:2 | | Chlorobenzene | NELAP | 10 | 100 | | ND | ppbv | 200 | 09/28/2016 19:2 | | MW 112.56 | | 0.046 | 0.4604 | | ND | mg/m3 | 200 | 03/20/2010 19.2 | | Chloroform | NELAP | 20 | 100 | | ND | ppbv | 200 | 09/28/2016 19:2 | | MW 119.38 | | 0.0977 | 0.4883 | | ND | mg/m3 | 200 | 03/20/2010 19.2 | | cis-1,2-Dichloroethene | NELAP | 10 | 100 | | 226 | ppbv | 200 | 09/28/2016 19:2 | | MW 96.94 | | 0.0396 | 0.3965 | | 0.8961 | mg/m3 | 200 | 09/20/2010 19.2 | | Ethylbenzene | NELAP | 10 | 100 | | ND | ppbv | 200 | 09/28/2016 19:2 | | MW 106.17 | | 0.0434 | 0.4342 | | ND | mg/m3 | 200 | 09/20/2010 19.2 | | Methylene chloride | NELAP | 10 | 200 | | ND | ppbv | 200 | 09/28/2016 19:2 | | MW 84.93 | | 0.0347 | 0.6947 | | ND | | 200 | 09/20/2010 19:2 | | Naphthalene | NELAP | 20 | 100 | | ND | mg/m3 | 200 | 09/28/2016 19:23 | | MW 128.17 | | 0.1048 | 0.5242 | | ND | mg/m3 | 200 | 09/20/2010 19.2 | | Tetrachloroethene | NELAP | 50 | 500 | | 7220 | ppbv | 1000 | 00/20/2046 40:0: | | MW 165.83 | | 0.3391 | 3.3913 | | 48.97 | | 1000 | 09/29/2016 10:23 | | Toluene | NELAP | 10 | 100 | | 40.97
ND | mg/m3 | 200 | 00/20/2016 10:27 | | MW 92.14 | | 0.0377 | 0.3768 | | ND | | 200 | 09/28/2016 19:27 | | trans-1,2-Dichloroethene | NELAP | 10 | 100 | | ND | mg/m3 | 200 | 00/20/2046 40:07 | | MW 96.94 | | 0.0396 | 0.3965 | | ND | | 200 | 09/28/2016 19:27 | | Trichloroethene | NELAP | 10 | 100 | | 518 | mg/m3
ppbv | 200 | 00/00/0040 40 0 | | MW 131.39 | | 0.0537 | 0.5374 | | | | 200 | 09/28/2016 19:27 | | Vinyl chloride | NELAP | 10 | 100 | | 2.7836
ND | mg/m3 | 200 | 00/20/2046 40:07 | | MW 62.50 | | 0.0256 | 0.2556 | | | | 200 | 09/28/2016 19:27 | | Xylenes, Total | NELAP | 30 | 300 | | ND
ND | mg/m3 | 200 | 00/00/0040 40 00 | | MW 106.17 | | 0.1303 | 1.3026 | | | ppbv | 200 | 09/28/2016 19:27 | | Surr: 4-Bromofluorobenzene | | 0.1303 | 41.2-165 | | ND
98.0 | mg/m3 | 200 | 00/00/0040 45 55 | | MW 175.00 | | 0 | | | 98.9 | %REC | 200 | 09/28/2016 19:27 | | levated reporting limit due to high | lovele of townst and | | 41.2-165 | | 98.9 | %REC | | | http://www.teklabinc.com/ Client: Environmental Operations, Inc. Work Order: 16091675 Client Project: Solutia 2950R Report Date: 30-Sep-16 Lab ID: 16091675-003 Client Sample ID: SSV-1 Matrix: AIR CANISTER Collection Date: 09/24/2016 9:26 | Analyses | Certification | MDL | RL | Qual | Result | Units | DF | Date Analyzed | |----------------------------|---------------|---------|----------|------|---------|--|------|------------------| | TO-15, VOLATILE ORGANIC | COMPOUNDS, B | Y GC/MS | | | | The state of s | | | | 1,1,1-Trichloroethane | NELAP | 10 | 100 | | 276 | ppbv | 200 | 09/28/2016 20:10 | | MW 133.40 | | 0.0546 | 0.5456 | | 1.5059 | mg/m3 | | | | 1,2-Dichloroethane | NELAP | 10 | 100 | | ND | ppbv | 200 | 09/28/2016 20:1 | | MW 98.96 | | 0.0405 | 0.4047 | | ND | mg/m3 | | | | Acetone | NELAP | 40 | 400 | | 630 | ppbv | 200 | 09/28/2016 20:1 | | MW 58.08 | | 0.095 | 0.9502 | | 1.4965 | mg/m3 | | | | Benzene | NELAP | 10 | 100 | | ND | ppbv | 200 | 09/28/2016 20:1 | | MW 78.11 | | 0.0319 | 0.3195 | | ND | mg/m3 | | | | Chlorobenzene | NELAP | 10 | 100 | | ND | ppbv | 200 | 09/28/2016 20:1 | | MW 112.56 | | 0.046 | 0.4604 | | ND | mg/m3 | | | | Chloroform | NELAP | 20 | 100 | 12 7 | 216 | ppbv | 200 | 09/28/2016 20:1 | | MW 119.38 | | 0.0977 | 0.4883 | | 1.0546 | mg/m3 | | | | cis-1,2-Dichloroethene | NELAP | 10 | 100 | | 172 | ppbv | 200 | 09/28/2016 20:1 | | MW 96.94 | | 0.0396 | 0.3965 | | 0.682 | mg/m3 | | | | Ethylbenzene | NELAP | 10 | 100 | | ND | ppbv | 200 | 09/28/2016 20:1 | | MW 106.17 | | 0.0434 | 0.4342 | | ND | mg/m3 | | | | Methylene chloride | NELAP | 10 | 200 | | ND | ppbv | 200 | 09/28/2016 20:1 | | MW 84.93 | | 0.0347 | 0.6947 | | ND | mg/m3 | | | | Naphthalene | NELAP | 20 | 100 | | ND | ppbv | 200 | 09/28/2016 20:1 | | MW 128.17 | | 0.1048 | 0.5242 | | ND | mg/m3 | | | | Tetrachloroethene | NELAP | 50 | 500 | | 8240 | ppbv | 1000 | 09/29/2016 11:1 | | MW 165.83 | | 0.3391 | 3.3913 | | 55.8882 | mg/m3 | | | | Toluene | NELAP | 10 | 100 | | ND | ppbv | 200 | 09/28/2016 20:1 | | MW 92.14 | | 0.0377 | 0.3768 | | ND | mg/m3 | | | | trans-1,2-Dichloroethene | NELAP | 10 | 100 | | 108 | ppbv | 200 | 09/28/2016 20:1 | | MW 96.94 | | 0.0396 | 0.3965 | | 0.4282 | mg/m3 | | | | Trichloroethene | NELAP | 50 | 500 | | 10600 | ppbv | 1000 | 09/29/2016 11:1 | | MW 131.39 | | 0.2687 | 2.6869 | | 56.9618 | mg/m3 | | | | Vinyl chloride | NELAP | 10 | 100 | | ND | ppbv | 200 | 09/28/2016 20:1 | | MW 62.50 | | 0.0256 | 0.2556 | | ND | mg/m3 | | | | Xylenes, Total | NELAP | 30 | 300 | | ND | ppbv | 200 | 09/28/2016 20:1 | | MW 106.17 | | 0.1303 | 1.3026 | | ND | mg/m3 | | | | Surr: 4-Bromofluorobenzene | | 0 | 41.2-165 | | 95.8 | %REC | 200 | 09/28/2016 20:1 | | MW 175.00 | | 0 | 41.2-165 | | 95.8 | %REC | | | http://www.teklabinc.com/ Client: Environmental Operations, Inc. Client Project: Solutia 2950R Work Order: 16091675 Report Date: 30-Sep-16 Lab ID: 16091675-004 Matrix: AIR CANISTER Client Sample ID: SSV-3 Collection Date: 09/24/2016 11:13 | Analyses | Certification | MDL | RL | Qual | Result | Units | DF | Date Analyzed | |----------------------------|---------------|---------|----------|---|--------|-------|----|-----------------| | O-15, VOLATILE ORGANIC | COMPOUNDS, B | Y GC/MS | | | | | | | | 1,1,1-Trichloroethane | NELAP | 0.1 | 1.00 | | 1.12 | ppbv | 2 | 09/28/2016 21:0 | | MW 133.40 | | 0.0005 | 0.0055 | | 0.0061 | mg/m3 | | | | 1,2-Dichloroethane | NELAP | 0.1 | 1.00 | * | ND | ppbv | 2 | 09/28/2016 21:0 | | MW 98.96 | | 0.0004 | 0.004 | | ND | mg/m3 | | | | Acetone | NELAP | 4 | 40.0 | | 44.4 | ppbv | 20 | 09/27/2016 21:0 | | MW 58.08 | | 0.0095 | 0.095 | | 0.1055 | mg/m3 | | | | Benzene | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 21:0 | | MW 78.11 | | 0.0003 | 0.0032 | | ND | mg/m3 | | | | Chlorobenzene | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 21:0 | | MW 112.56 | | 0.0005 | 0.0046 | | ND | mg/m3 | | | | Chloroform | NELAP | 0.2 | 1.00 | I. T ". | ND | ppbv | 2 | 09/28/2016 21:0 | | MW 119.38 | | 0.001 | 0.0049 | | ND | mg/m3 | | | | cis-1,2-Dichloroethene | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 21:0 | | MW 96.94 | | 0.0004 | 0.004 | | ND | mg/m3 | | | | Ethylbenzene | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 21:0 | | MW 106.17 | | 0.0004 | 0.0043 | | ND | mg/m3 | | | | Methylene chloride | NELAP | 0.1 | 2.00 | | ND | ppbv | 2 | 09/28/2016 21:0 | | MW 84.93 | | 0.0003 | 0.0069 | | ND | mg/m3 | | | | Naphthalene |
NELAP | 0.2 | 1.00 | 4 1 1 1 1 1 | ND | ppbv | 2 | 09/28/2016 21:0 | | MW 128.17 | | 0.001 | 0.0052 | | ND | mg/m3 | | | | Tetrachloroethene | NELAP | 0.1 | 1.00 | | 4.38 | ppbv | 2 | 09/28/2016 21:0 | | MW 165.83 | | 0.0007 | 0.0068 | | 0.0297 | mg/m3 | | | | Toluene | NELAP | 0.1 | 1.00 | | 1.08 | ppbv | 2 | 09/28/2016 21:0 | | MW 92.14 | | 0.0004 | 0.0038 | | 0.0041 | mg/m3 | | | | trans-1,2-Dichloroethene | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 21:0 | | MW 96.94 | | 0.0004 | 0.004 | | ND | mg/m3 | | | | Trichloroethene | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 21:0 | | MW 131.39 | | 0.0005 | 0.0054 | | ND | mg/m3 | | | | Vinyl chloride | NELAP | 0.1 | 1.00 | | ND | ppbv | 2 | 09/28/2016 21:0 | | MW 62.50 | | 0.0003 | 0.0026 | | ND | mg/m3 | | | | Xylenes, Total | NELAP | 0.3 | 3.00 | | ND | ppbv | 2 | 09/28/2016 21:0 | | MW 106.17 | | 0.0013 | 0.013 | | ND | mg/m3 | | | | Surr: 4-Bromofluorobenzene | | 0 | 41.2-165 | | 95.6 | %REC | 2 | 09/28/2016 21:0 | | MW 175.00 | | 0 | 41.2-165 | | 95.6 | %REC | | | # **Quality Control Results** http://www.teklabinc.com/ Client: Environmental Operations, Inc. Work Order: 16091675 Client Project: Solutia 2950R Report Date: 30-Sep-16 | Batch 122846 SampType: Manual | BLK Units ppb | v | | | Date | |---|---------------|------------------|--------------|----------------------|------------| | Analyses | RL Qual | Result Spike SPK | Ref Val %REC | Low Limit High Limit | Analyzed | | 1,1,1-Trichloroethane | 0.50 | ND | | | 09/27/2016 | | 1,2-Dichloroethane | 0.50 | ND | | | 09/27/2016 | | Acetone | 2.00 | ND | | | 09/27/2016 | | Benzene | 0.50 | ND | | | 09/27/2016 | | Chlorobenzene | 0.50 | ND | | | 09/27/2016 | | Chloroform | 0.50 | ND | | | 09/27/2016 | | cis-1,2-Dichloroethene | 0.50 | ND | | | 09/27/2016 | | Ethylbenzene | 0.50 | ND | | | 09/27/2016 | | Methylene chloride | 1.00 | ND | | | 09/27/2016 | | Naphthalene | 0.50 | ND | | | 09/27/2016 | | Tetrachloroethene | 0.50 | ND | | | 09/27/2016 | | Toluene | 0.50 | ND | | | 09/27/2016 | | trans-1,2-Dichloroethene | 0.50 | ND | | | 09/27/2016 | | Trichloroethene | 0.50 | ND | | | 09/27/2016 | | Vinyl chloride | 0.50 | ND | | | 09/27/2016 | | Xylenes, Total | 1.50 | ND | | | 09/27/2016 | | Surr: 4-Bromofluorobenzene | | 9.68 10.00 | 96.8 | 41.2 165 | 09/27/2016 | | Batch 122846 SampType: Lo | CSD | Units ppbv | | | | RPD Lir | mit 30 | | |---------------------------------|------|-------------|-------|-------------|-------|-------------|--------|------------------| | SampID: LCSD-U160927-1 Analyses | RL O | Dual Result | Spike | SPK Ref Val | %REC | RPD Ref Val | %RPD | Date
Analyzed | | 1,1,1-Trichloroethane | 0.50 | 9.06 | 10.10 | 0 | 89.7 | 8.970 | 1.00 | 09/27/2016 | | 1,2-Dichloroethane | 0.50 | 10.4 | 10.00 | 0 | 103.8 | 10.32 | 0.58 | 09/27/2016 | | Acetone | 2.00 | 10.6 | 10.90 | 0 | 96.8 | 10.63 | 0.76 | 09/27/2016 | | Benzene | 0.50 | 9.77 | 10.40 | 0 | 93.9 | 9.710 | 0.62 | 09/27/2016 | | Chlorobenzene | 0.50 | 10.8 | 10.60 | 0 | 101.6 | 10.72 | 0.47 | 09/27/2016 | | Chloroform | 0.50 | 9.91 | 10.40 | 0 | 95.3 | 9.920 | 0.10 | 09/27/2010 | | cis-1,2-Dichloroethene | 0.50 | 9.66 | 10.10 | 0 | 95.6 | 9.620 | 0.41 | 09/27/201 | | Ethylbenzene | 0.50 | 10.4 | 10.60 | 0 | 98.4 | 10.40 | 0.29 | 09/27/201 | | Methylene chloride | 1.00 | 9.85 | 9.500 | 0 | 103.7 | 9.830 | 0.20 | 09/27/201 | | Naphthalene | 0.50 | 14.5 | 10.60 | 0 | 136.7 | 13.98 | 3.58 | 09/27/201 | | Tetrachloroethene | 0.50 | 10.3 | 10.50 | 0 | 98.2 | 10.26 | 0.49 | 09/27/201 | | Toluene | 0.50 | 9.92 | 10.50 | 0 | 94.5 | 9.880 | 0.40 | 09/27/201 | | trans-1,2-Dichloroethene | 0.50 | 10.4 | 11.00 | 0 | 94.3 | 10.37 | 0.00 | 09/27/201 | | Trichloroethene | 0.50 | 10.3 | 10.80 | 0 | 95.0 | 10.22 | 0.39 | 09/27/201 | | Vinyl chloride | 0.50 | 10.7 | 10.40 | 0 | 102.5 | 10.63 | 0.28 | 09/27/201 | | Xylenes, Total | 1.50 | 32.2 | 31.30 | 0 | 102.8 | 32.19 | 0.06 | 09/27/201 | | Surr: 4-Bromofluorobenzene | | 10.0 | 10.00 | | 100.1 | | | 09/27/2010 | # **Quality Control Results** http://www.teklabinc.com/ Client: Environmental Operations, Inc. Work Order: 16091675 Client Project: Solutia 2950R Report Date: 30-Sep-16 | Batch 122846 SampType: LC
SampID: LCS-U160927-1 | S | Units ppbv | | | | | | | | |--|------|------------|--------|-------|-------------|-------|-----------|------------|------------------| | Analyses | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Date
Analyzed | | 1,1,1-Trichloroethane | 0.50 | | 8.97 | 10.10 | 0 | 88.8 | 54.7 | 131 | 09/27/2016 | | 1,2-Dichloroethane | 0.50 | | 10.3 | 10.00 | 0 | 103.2 | 58.1 | 142 | 09/27/2016 | | Acetone | 2.00 | | 10.6 | 10.90 | 0 | 97.5 | 67.6 | 151 | 09/27/2016 | | Benzene | 0.50 | | 9.71 | 10.40 | 0 | 93.4 | 57.5 | 137 | 09/27/2016 | | Chlorobenzene | 0.50 | | 10.7 | 10.60 | 0 | 101.1 | 59.6 | 155 | 09/27/2016 | | Chloroform | 0.50 | | 9.92 | 10.40 | 0 | 95.4 | 72.3 | 136 | 09/27/2016 | | cis-1,2-Dichloroethene | 0.50 | | 9.62 | 10.10 | 0 | 95.2 | 78 | 138 | 09/27/2016 | | Ethylbenzene | 0.50 | | 10.4 | 10.60 | 0 | 98.1 | 58.3 | 158 | 09/27/2016 | | Methylene chloride | 1.00 | | 9.83 | 9.500 | 0 | 103.5 | 68.1 | 130 | 09/27/2016 | | Naphthalene | 0.50 | | 14.0 | 10.60 | 0 | 131.9 | 0 | 261 | 09/27/2016 | | Tetrachloroethene | 0.50 | | 10.3 | 10.50 | 0 | 97.7 | 60.3 | 148 | 09/27/2016 | | Toluene | 0.50 | | 9.88 | 10.50 | 0 | 94.1 | 56.9 | 150 | 09/27/2016 | | trans-1,2-Dichloroethene | 0.50 | | 10.4 | 10.00 | 0 | 103.7 | 69 | 134 | 09/27/2016 | | Trichloroethene | 0.50 | | 10.2 | 10.80 | 0 | 94.6 | 59.2 | 141 | 09/27/2016 | | Vinyl chloride | 0.50 | | 10.6 | 10.40 | 0 | 102.2 | 65 | 125 | 09/27/2016 | | Xylenes, Total | 1.50 | | 32.2 | 31.30 | 0 | 102.8 | 56 | 146 | 09/27/2016 | | Surr: 4-Bromofluorobenzene | | | 10.1 | 10.00 | | 100.7 | 41.2 | 165 | 09/27/2016 | | Batch 122887 SampType: SampID: MBLK-U160928-1 | MBLK | Units ppbv | | | | | | | Date | |---|------|------------|--------|-------|-------------|------|-----------|------------|------------| | Analyses | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | 1,1,1-Trichloroethane | 0.50 | | ND | | | | | | 09/28/2016 | | 1,2-Dichloroethane | 0.50 | | ND | | | | | | 09/28/2016 | | Acetone | 2.00 | | ND | | | | | | 09/28/2016 | | Benzene | 0.50 | | ND | | | | | | 09/28/2016 | | Benzene | 0.50 | | ND | | | | | | 09/28/2016 | | Chlorobenzene | 0.50 | | ND | | | | | | 09/28/2016 | | Chloroform | 0.50 | | ND | | | | | | 09/28/2016 | | cis-1,2-Dichloroethene | 0.50 | | ND | | | | | | 09/28/2016 | | Ethylbenzene | 0.50 | | ND | | | | | | 09/28/2016 | | Ethylbenzene | 0.50 | | ND | | | | | | 09/28/2016 | | Methylene chloride | 1.00 | | ND | | | | | | 09/28/2016 | | Naphthalene | 0.50 | | ND | | | | | | 09/28/2016 | | Tetrachloroethene | 0.50 | | ND | | | | | | 09/28/2016 | | Toluene | 0.50 | | ND | | | | | | 09/28/2016 | | Toluene | 0.50 | | ND | | | | | | 09/28/2016 | | trans-1,2-Dichloroethene | 0.50 | | ND | | | | | | 09/28/2016 | | Trichloroethene | 0.50 | | ND | | | | | | 09/28/2016 | | Vinyl chloride | 0.50 | | ND | | | | | | 09/28/2016 | | Xylenes, Total | 1.50 | | ND | | | | | | 09/28/2016 | | Surr: 4-Bromofluorobenzene | | | 8.85 | 10.00 | | 88.5 | 41.2 | 165 | 09/28/2016 | | Surr: 4-Bromofluorobenzene | | | 9.07 | 10.00 | | 90.7 | 41.2 | 165 | 09/28/2016 | # **Quality Control Results** http://www.teklabinc.com/ Client: Environmental Operations, Inc. Work Order: 16091675 Client Project: Solutia 2950R Report Date: 30-Sep-16 | Batch 122887 SampType: | LCSD | Units ppbv | | | | | RPD Lir | nit 30 | | |------------------------------------|------|------------|--------|-------|-------------|-------|-------------|--------|------------------| | SampID: LCSD-U160928-1
Analyses | RL | Qual F | Result | Spike | SPK Ref Val | %REC | RPD Ref Val | %RPD |
Date
Analyzed | | 1,1,1-Trichloroethane | 0.50 | | 9.63 | 10.10 | 0 | 95.3 | 9.320 | 3.27 | 09/28/2016 | | 1,2-Dichloroethane | 0.50 | | 11.1 | 10.00 | 0 | 111.2 | 10.96 | 1.45 | 09/28/2016 | | Acetone | 2.00 | | 11.5 | 10.90 | 0 | 105.5 | 11.37 | 1.14 | 09/28/2016 | | Benzene | 0.50 | | 8.97 | 10.40 | 0 | 86.2 | 8.700 | 3.06 | 09/28/2016 | | Benzene | 0.50 | | 10.5 | 10.40 | 0 | 100.8 | 10.17 | 3.00 | 09/28/2016 | | Chlorobenzene | 0.50 | | 11.5 | 10.60 | 0 | 108.9 | 11.21 | 2.90 | 09/28/2016 | | Chloroform | 0.50 | | 10.4 | 10.40 | 0 | 100.3 | 10.25 | 1.74 | 09/28/2016 | | cis-1,2-Dichloroethene | 0.50 | | 10.2 | 10.10 | 0 | 100.9 | 9.960 | 2.28 | 09/28/2016 | | Ethylbenzene | 0.50 | | 11.3 | 10.60 | 0 | 106.3 | 10.96 | 2.79 | 09/28/2016 | | Ethylbenzene | 0.50 | | 10.6 | 10.60 | 0 | 99.8 | 10.29 | 2.78 | 09/28/2016 | | Methylene chloride | 1.00 | | 10.5 | 9.500 | 0 | 110.7 | 10.32 | 1.92 | 09/28/2016 | | Naphthalene | 0.50 | | 16.6 | 10.60 | 0 | 157.0 | 15.24 | 8.78 | 09/28/2016 | | Tetrachloroethene | 0.50 | | 10.9 | 10.50 | 0 | 104.0 | 10.62 | 2.79 | 09/28/2016 | | Toluene | 0.50 | | 10.6 | 10.50 | 0 | 100.6 | 10.28 | 2.69 | 09/28/2016 | | Toluene | 0.50 | | 9.46 | 10.50 | 0 | 90.1 | 9.210 | 2.68 | 09/28/2016 | | trans-1,2-Dichloroethene | 0.50 | | 11.0 | 11.00 | 0 | 99.8 | 10.81 | 1.56 | 09/28/2016 | | Trichloroethene | 0.50 | | 10.9 | 10.80 | 0 | 101.1 | 10.62 | 2.79 | 09/28/2016 | | Vinyl chloride | 0.50 | | 11.5 | 10.40 | 0 | 110.2 | 11.24 | 1.94 | 09/28/2016 | | Xylenes, Total | 1.50 | | 34.9 | 31.30 | 0 | 111.5 | 34.07 | 2.41 | 09/28/2016 | | Surr: 4-Bromofluorobenzene | | | 8.81 | 10.00 | | 88.1 | | | 09/28/2016 | | Surr: 4-Bromofluorobenzene | | | 8.60 | 10.00 | | 86.0 | | | 09/28/2016 | | SampID: LCS-U160928-1
Analyses | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Date
Analyzed | |-----------------------------------|------|------|--------|-------|-------------|-------|-----------|------------|------------------| | 1,1,1-Trichloroethane | 0.50 | | 9.32 | 10.10 | 0 | 92.3 | 54.7 | 131 | 09/28/2016 | | 1,2-Dichloroethane | 0.50 | | 11.0 | 10.00 | 0 | 109.6 | 58.1 | 142 | 09/28/2016 | | Acetone | 2.00 | | 11.4 | 10.90 | 0 | 104.3 | 67.6 | 151 | 09/28/2016 | | Benzene | 0.50 | | 10.2 | 10.40 | 0 | 97.8 | 57.5 | 137 | 09/28/2016 | | Benzene | 0.50 | | 8.70 | 10.40 | 0 | 83.7 | 57.5 | 137 | 09/28/2016 | | Chlorobenzene | 0.50 | | 11.2 | 10.60 | 0 | 105.8 | 59.6 | 155 | 09/28/2016 | | Chloroform | 0.50 | | 10.2 | 10.40 | 0 | 98.6 | 72.3 | 136 | 09/28/2016 | | cis-1,2-Dichloroethene | 0.50 | | 9.96 | 10.10 | 0 | 98.6 | 78 | 138 | 09/28/2016 | | Ethylbenzene | 0.50 | | 11.0 | 10.60 | 0 | 103.4 | 58.3 | 158 | 09/28/2016 | | Ethylbenzene | 0.50 | | 10.3 | 10.60 | 0 | 97.1 | 58.3 | 158 | 09/28/2016 | | Methylene chloride | 1.00 | | 10.3 | 9.500 | 0 | 108.6 | 68.1 | 130 | 09/28/2016 | | Naphthalene | 0.50 | | 15.2 | 10.60 | 0 | 143.8 | 0 | 261 | 09/28/2016 | | Tetrachloroethene | 0.50 | | 10.6 | 10.50 | 0 | 101.1 | 60.3 | 148 | 09/28/2016 | | Toluene | 0.50 | | 10.3 | 10.50 | 0 | 97.9 | 56.9 | 150 | 09/28/2016 | | Toluene | 0.50 | | 9.21 | 10.50 | 0 | 87.7 | 56.9 | 150 | 09/28/2016 | | trans-1,2-Dichloroethene | 0.50 | | 10.8 | 10.00 | 0 | 108.1 | 69 | 134 | 09/28/2016 | | Trichloroethene | 0.50 | | 10.6 | 10.80 | 0 | 98.3 | 59.2 | 141 | 09/28/2016 | | Vinyl chloride | 0.50 | | 11.2 | 10.40 | 0 | 108.1 | 65 | 125 | 09/28/2016 | | Xylenes, Total | 1.50 | | 34.1 | 31.30 | 0 | 108.8 | 56 | 146 | 09/28/2016 | | Surr: 4-Bromofluorobenzene | | | 8.91 | 10.00 | | 89.1 | 41.2 | 165 | 09/28/2016 | | Surr: 4-Bromofluorobenzene | | | 9.13 | 10.00 | | 91.3 | 41.2 | 165 | 09/28/2016 | SSV-1 -5.5/-2.73 SSV-3 _/-1.06 ## **Receiving Check List** http://www.teklabinc.com/ Work Order: 16091675 Client: Environmental Operations, Inc. Report Date: 30-Sep-16 Client Project: Solutia 2950R Received By: AMD Carrier: John Riley Elizabeth a Hurley no Oilau Reviewed by: Completed by: On: On: 26-Sep-16 26-Sep-16 Amber M. Dilallo Elizabeth A. Hurley Pages to follow: Chain of custody Extra pages included 0 Yes 🗸 No Not Present Temp °C Shipping container/cooler in good condition? None 🗹 Blue Ice Ice 🔲 Dry Ice Type of thermal preservation? Yes 🗹 No 🗌 Chain of custody present? Yes 🗹 No 🔲 Chain of custody signed when relinquished and received? Yes 🔽 No 🗌 Chain of custody agrees with sample labels? Yes 🔽 No 🗆 Samples in proper container/bottle? Yes 🗹 No 🗌 Sample containers intact? Yes 🗹 No 🗌 Sufficient sample volume for indicated test? Yes 🗹 No 🗌 All samples received within holding time? NA 🗸 Field Lab Reported field parameters measured: No 🗆 Yes 🗹 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗌 No 🗌 No VOA vials 🗸 Water - at least one vial per sample has zero headspace? No 🗌 No TOX containers Yes Water - TOX containers have zero headspace? NA V Yes \square No 🗆 Water - pH acceptable upon receipt? No \square NA 🔽 NPDES/CWA TCN interferences checked/treated in the field? Yes Any No responses must be detailed below or on the COC. Samples were transferred to Collinsville Air Lab on 9/27/16 at 9:50AM. EAH 9/27/16 Clients final pressure readings followed by readings taken upon arrival at the laboratory. Controller used not indicated, digital gauge used for lab reading. HLR 9/27/16 SSV-4 -5/-3.08 SSV-2 -5/-3.88 **TEKLAB, INC.** 3920 Pintail Drive Suite A, Springfield, IL 62711 Phone (217) 698-1004 Fax (217) 698-1005 5445 Horseshoe Lake Road, Collinsville, IL 62234 Phone (618) 344-1004 Fax (618) 344-1005 Lab Work Order # 10091015 ### AIR SAMPLING FIELD FORM AND CHAIN OF CUSTODY | | <i>P</i> | 1 | 1 | | | | | | | | | | | | | | | | |--|---|---|-------------|------------|----------|---------------------------------|--|-----------------------|-------------------------------|---------------------------------------|--|----------|----------|-------------------|-------------|-------|--|--| | Client Name: | | | | | | Results Requested (check one) | | | | | Sample Type (check one) | | | | | | | | | Address: | 1530 South 2 | | X Standard | | | | | Ambient AirSoil Gas | | | | | r | | | | | | | Phone: | | | | | | 1-3 | Day (1009 | % surch | arge) | Indoor AirLandfill Gas | | | | | | | | | | Email: | Larry O environments OPC. Com | | | | | 4-5 | Day (50% | surcha | rge) | ✓ Indoor Sub-Slab Other (specify) | | | | | |) | | | | Project ID: | 5 | | Oth | er (specif | y below |) | Stack | | | | | | | | | | | | | Project Manager | Larry Kosen | Lab Use Only: Sample pick up:N, Samples on:ice/BlueNo Ice,N Temp. ° C | | | | | | | | | | | | | | | | | | Sampler: | Robert Andrews | | | | | Comments: | | | | | | | | | | | | | | PO Number: | 2950 R | | | | | | | | | | | | | | | | | | | Lab Use Only | | | | | | | Requested Analysis (list metals/other below in comments) | | | | | | | | | | | | | | | Sample | | | | rameters Sample Stop Parameters | | | () () | ect
E
E
E | | | ТЅР | | | | | | | | 8 | Canister | Controller | | | Vacuum | Vac | | Vacuum | S 5 E B | MBT
MBT
naler
pand | e . | | Ë | <u> </u> | | | | | b | 01-1 | Nonetra | . | D.I. | - | C- 11-X | D-4- | | (in. Hg) | ists o-1 | TO-15 select BTEX MBTE Naphthalene Isopropanol TPH-GRO | TO-13 | 5 | PM10/ | Metals | Other | | | | Laboratory ID | Sample Identification | Number | Number | Date 7-24 | 1 ime | (in. Hg) | Date | Time | (in. Hg) | F →(@ ü | F m Z m F | <u> </u> | | Δ. | ≥ | -0 | | | | | | 16090141-0 | | | 4 64 | | 4-24 | 9:24 | | | | | | | | | | | | | 550-2 | 16Chaimes | | 9-24 | | | | | | | | | | | | | | | | N 401(DC: | 556-3 | T6090141-00 | <u>بر</u> | 4-24 | | 7.0 | /1 - | 31 | 7.5 | | | | | | | | | | | NECONODIA | 550-4 | 0658 | | 9-24 | 10:57 | -23 | | 11:07 | | X | | | | | | | | | | 002 | SSV-Z | 0863 | * | 9-24 | 9:33 | -29 | | 9-43 | -5 | × | | | | | | | | | | <u> </u> | SSU-1 | 0675 | ~ | 9-24 | _ | -31" | 9-24 | | -5.5 | \propto | ······································ | | | | | | | | | 004 | 554-3 | 0674 | * | 9-24 | 11.15 | -30 | 9-24 | 11:13 | | メ | \longrightarrow | 1 | <u> </u> | | | in t | | | | | <u> </u> | | | | | | | | | | Are these samples known to be involved in litigation? If yes, a level IV data package will be generated and a surcharge will apply. Are these samples known to be hazardous? Yes No No | ments/Special Instructions | Courier | | | | | | | | | | | | | | | | | Shipping Company and Tracking Number: | Relinquished By | Date/Time Received By | | | | | | | | | 2 | | | | | | | | | | Think | | | | | | 1/25/16 16:20 mbg 000 120 t | | | | | | | | A 28/14 1000 | | | | | | OMPO | OME STOCHED | | | | | | | of the 950 Heather Ry | | | | | | | 9/27/16 950 | | | | | The individual sign | aing this agreement on h | obalf of clier | at acknowle | dage tha | t ho/sho | boe roo | d and un | dozaton | do the te | rmo and | MANUAL I | | <u> </u> | | | | | | conditions of this agreement, on the reverse, and has the authority to sign on behalf of client. White Copy - Laboratory Yellow Copy - Sampler